UVA - 13250 Balance Game(扩展欧几里得)

思路

我们要解的一个方程是ax+by+cz=w。显然枚举是O(n^3)会超时,生成函数无法解决x,y,z是负数的情况。注意到m的范围只有5000,所以考虑将方程转化为ax+by=w-cz然后枚举z(-5000,5000)再跑extgcd。由于x*(res/gcds)+k*b/gcds,y*(res/gcds)-k*a/gcds都属于[-m,m],我们能得到两个k的范围,它们的交集长度的累加就是答案。时间复杂度O(nlogn)

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include <bits/stdc++.h>
#define ms(a,val) memset(a,val,sizeof(a))
#define ll long long
#define INF 0x7fffffff

using namespace std;

ll extgcd(ll a,ll b,ll &x,ll &y){
ll d=a;
if(b){
d=extgcd(b,a%b,y,x);
y-=(a/b)*x;
}
else{
x=1,y=0;
}
return d;
}
void getBound(ll b,ll g,ll l,ll r,ll &low,ll &high){
// compute l <= b + g * k <= r, k in [lk, rk]
if (g > 0) {
low = ceil((double) (l-b)/g);
high = floor((double) (r-b)/g);
} else {
low = ceil((double) (r-b)/g);
high = floor((double) (l-b)/g);
}
}
ll solve(ll a,ll b,ll res,ll n){
ll x,y;
ll gcds=extgcd(a,b,x,y);
if(res%gcds)return 0;
ll lowa,higha,lowb,highb;
getBound(x*(res/gcds),b/gcds,-n,n,lowa,higha);
if(lowa>higha)return 0;
getBound(y*(res/gcds),-a/gcds,-n,n,lowb,highb);
if(lowb>highb)return 0;
lowa=max(lowa,lowb);
higha=min(higha,highb);
return higha-lowa+1;
}

int main() {
ll m,w,n1,n2,n3;
while(~scanf("%lld%lld",&m,&w)){
ll ans=0;
scanf("%lld%lld%lld",&n1,&n2,&n3);
if(n1<n2)swap(n1,n2);
if(n1<n3)swap(n1,n3);
for(ll i=-m;i<=m;i++){
ll tw=w+i*n1;
if(tw>=-m*(n2+n3)&&tw<=m*(n2+n3)){
ans+=solve(n2,n3,tw,m);
}
}
printf("%lld\n",ans);
}
return 0;
}